CHANGES IN THE ELECTRONIC STRUCTURE OF NiFe₂O₄@SiO₂ NANOCOMPOSITES BY SYNTHESIS PROCESS AND ANNEALING

Adam Czempik, ^{1,*} Anna Bajorek, ¹ Ewa Partyka-Jankowska, ² Tomasz Sobol, ²
Magdalena Szczepanik, ² Jerzy Kubacki, ¹ Barbara Liszka, ¹ Fabien Grasset, ^{4,5} Krystian Prusik, ¹
Joanna Klimontko, ¹ Sandy Auguste, ³ Anthony Rousseau, ³ and Nirina Randrianantoandro ³

¹ University of Silesia in Katowice, 40-007 Katowice, Poland

² SOLARIS National Synchrotron Radiation Centre, 30-392 Krakow, Poland

³ Le Mans Université, 72085 Le Mans, France

⁴ Université de Rennes, 35000 Rennes, France

⁵ National Institute for Materials Science, Tsukuba, 305-0044, Japan

*E-mail: adam.czempik@us.edu.pl

Nickel ferrite NiFe₂O₄ (NFO) magnetic nanoparticles are promising materials for magnetic hyperthermia in cancer treatment [1]. To enhance biocompatibility and chemical stability, the nanoparticles can be embedded in silica, forming NFO@SiO₂ nanocompounds.

For our research, NFO@SiO₂ was obtained using two methods: co-precipitation followed by microemulsion [1] and the wet-chemical method (WCM) [2]. Annealing at various temperatures was performed to enhance the stability of NFO and improve the properties of the nanocompounds. The structural, electronic and magnetic properties were tested, among others, using X-ray absorption spectroscopy at SOLARIS at PHELIX and PIRX beamlines.

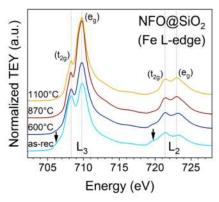


Figure 1 – X-ray absorption spectrum of NFO@SiO₂, obtained by WCM, reveals the influence of annealing temperature on the electronic structure of iron, including the presence of Fe^{3+} and some traces of Fe^{2+} (marked by arrows).

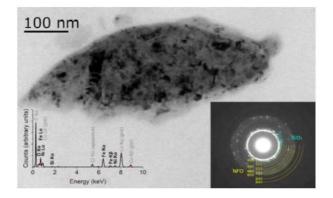


Figure 2 - Transmission electron microscopy image of NFO@SiO₂ obtained by WCM and annealed at 1100°C. The results of energy dispersive spectroscopy (bottom left) and selective area electron diffraction (bottom right) confirm the presence of expected elements and phases: nickel ferrite (NFO, ref. 01-090-8282) and cristobalite α (SiO₂ ref. 00-039-1425).

- [1] A. Czempik et al., Ceramics International 50 (2024) 20473 20494
- [2] Y Ichiyanagi et al., phys. stat. sol. (c) 1, No. 12, 3485–3488 (2004)